The Segmentation Toolbox
Segmentation

Why?

Understand what motives consumer behavior

Uncover patterns of consumer motivations and link them to characteristics

Retool existing offers to appeal to a broader range of consumer

Discover how brands are positioned within different needs structures

Enhance new product development and improve customer relationships
Our Four Types of Segmentations

- **Post Hoc segmentation** uses information from consumer surveys, customer data or other sources to classify consumers.

- **Brand segmentation** reveals clusters of brands based on consumer perception. Relies heavily on visual outputs.

- **A Priori segmentation** develops statistical profiles of consumers to understand and predict important marketing information, such as existing segmentations or likelihood to purchase a product.

- **Key Driver segmentation** uses key driver analysis (regression) to describe different priorities of existing segments.
Post Hoc Segmentation

Consumer surveys, customer data or other sources to classify consumers
Post Hoc Segmentation

- Most Common Types
 - K-Means
 - Latent Class
 - Two Step
 - Hierarchal
 - Canonical Latent
 - Tandem
Steps in an Ad Hoc Segmentation Study

• Articulate a **strategic rationale** for segmentation (i.e., why are we segmenting this market?).

• Select a set of **needs-based segmentation variables** most useful for achieving the strategic goals.

• **Select a cluster analysis procedure** for aggregating (or disaggregating customers) into segments.

• **Group customers** into a defined number of different segments.

• **Choose the segments that will best serve the firm’s strategy**, given its capabilities and the likely reactions of competitors.
The *K-Means* Clustering Method

- **Given** *k*, the *k-means* algorithm is implemented in three steps:
 - Partition objects into *k* nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
- **Strength**: *Relatively efficient*: where *n* is # objects, *k* is # clusters, and *t* is # iterations
- **Weakness**
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Results often murky depending on column or row smoothing
Latent Class Clustering Method

Factor Analysis

- A ‘Q-Factor’ analysis creates variables for each factor based on correlations. Each respondent receives a correlation – similar to a correlation coefficient – for each factor. A respondent is placed into the group where he or she has the highest correlation.

<table>
<thead>
<tr>
<th></th>
<th>Dependibility/Protection</th>
<th>Price</th>
<th>Environment</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>That the fuel protects your engine</td>
<td>0.84</td>
<td>0.07</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>That the fuel has a consistent and reliable quality</td>
<td>0.82</td>
<td>0.13</td>
<td>0.18</td>
<td>0.22</td>
</tr>
<tr>
<td>That the fuel prolongs the engine life of your car</td>
<td>0.76</td>
<td>0.15</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>That the fuel adds power to the engine</td>
<td>0.66</td>
<td>0.08</td>
<td>0.02</td>
<td>0.37</td>
</tr>
<tr>
<td>That the fuel have a higher octane level</td>
<td>0.63</td>
<td>0.25</td>
<td>0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>That the fuel have a competitive price</td>
<td>0.23</td>
<td>0.76</td>
<td>0.13</td>
<td>-0.01</td>
</tr>
<tr>
<td>That the fuel has a low price</td>
<td>0.01</td>
<td>0.74</td>
<td>0.08</td>
<td>0.11</td>
</tr>
<tr>
<td>That the fuel gives the best mileage</td>
<td>0.19</td>
<td>0.52</td>
<td>0.06</td>
<td>0.33</td>
</tr>
<tr>
<td>That the fuel reduces other costs in the operation of your car</td>
<td>0.43</td>
<td>0.52</td>
<td>0.08</td>
<td>0.35</td>
</tr>
<tr>
<td>That the fuel does not pollute the air</td>
<td>0.20</td>
<td>0.10</td>
<td>0.92</td>
<td>0.10</td>
</tr>
<tr>
<td>That the use of the fuel does not damage the environment</td>
<td>0.22</td>
<td>0.17</td>
<td>0.89</td>
<td>0.16</td>
</tr>
<tr>
<td>That the fuel helps your car to accelerate better</td>
<td>0.35</td>
<td>0.08</td>
<td>0.02</td>
<td>0.75</td>
</tr>
<tr>
<td>That the fuel helps your car run more smoothly</td>
<td>0.10</td>
<td>0.17</td>
<td>0.27</td>
<td>0.71</td>
</tr>
</tbody>
</table>
Latent Class Clustering Method

Factor Analysis

- Dependibility/Protection: 13% (Price: $3.93)
- Price: 68% (Price: $2.88)
- Environment: 9% (Price: $3.90)
- Performance: 10% (Price: $3.39)

Average Willing to Pay Per Liter

<table>
<thead>
<tr>
<th>Factor</th>
<th>Willing to Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependibility/Protection</td>
<td>$3.93</td>
</tr>
<tr>
<td>Price</td>
<td>$2.88</td>
</tr>
<tr>
<td>Environment</td>
<td>$3.90</td>
</tr>
<tr>
<td>Performance</td>
<td>$3.39</td>
</tr>
</tbody>
</table>
Canonical Latent Segmentation

• Combines two basis sets of attributes
• Segment two sets of variables first
 – Run a canonical correlation to determine which variables are most closely related, then segment on those relationships.
 – Combine groups based on both processes
• What is Canonical Correlation?
 – Canonical is the a statistical term for analyzing latent variables—those which are not directly observed—that represent multiple variables which are directly observed.
 – This use of latent variables is common other techniques such as structural equations modeling.
• In our sample case, we will use canonical correlation to link two cluster groups.
Skincare Latent Class Analysis

<table>
<thead>
<tr>
<th>Skincare Benefits</th>
<th>Skincare</th>
<th>Product Bouquet</th>
<th>Genuine & Natural</th>
<th>Personal Indulgence</th>
<th>Quality & Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not dry out skin</td>
<td>0.77</td>
<td>0.71</td>
<td>-0.05</td>
<td>0.01</td>
<td>-0.16</td>
</tr>
<tr>
<td>Cleans well</td>
<td>0.73</td>
<td>0.71</td>
<td>-0.06</td>
<td>0.02</td>
<td>-0.10</td>
</tr>
<tr>
<td>Leaves skin soft and smooth</td>
<td>0.70</td>
<td>0.70</td>
<td>-0.07</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>Does not leave skin itchy</td>
<td>0.64</td>
<td>0.70</td>
<td>-0.09</td>
<td>0.01</td>
<td>-0.27</td>
</tr>
<tr>
<td>Is for everyday use rather than special occasions</td>
<td>0.63</td>
<td>0.70</td>
<td>0.05</td>
<td>0.24</td>
<td>0.08</td>
</tr>
<tr>
<td>Has products that are fun to use</td>
<td>0.60</td>
<td>0.62</td>
<td>0.12</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td>Has a long-lasting fragrance</td>
<td>0.48</td>
<td>0.60</td>
<td>0.04</td>
<td>0.06</td>
<td>0.24</td>
</tr>
<tr>
<td>Has products that make you smell great</td>
<td>0.49</td>
<td>0.59</td>
<td>0.00</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>The color of the product is natural in appearance</td>
<td>0.47</td>
<td>0.52</td>
<td>0.08</td>
<td>0.24</td>
<td>0.08</td>
</tr>
<tr>
<td>Is dermatologist recommended</td>
<td>0.69</td>
<td>0.71</td>
<td>0.05</td>
<td>0.21</td>
<td>0.06</td>
</tr>
<tr>
<td>Made with the "latest" ingredients</td>
<td>0.81</td>
<td>0.85</td>
<td>0.66</td>
<td>0.01</td>
<td>0.20</td>
</tr>
<tr>
<td>Contains familiar ingredients</td>
<td>0.82</td>
<td>0.82</td>
<td>0.65</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>Its products are made from natural ingredients that are good for you</td>
<td>0.76</td>
<td>0.75</td>
<td>0.56</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>Is relaxing</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Turns my everyday shower into a few special minutes for me</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Has a calming effect</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Helps keep my skin looking young</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Makes a great gift</td>
<td>0.65</td>
<td>0.71</td>
<td>0.34</td>
<td>-0.01</td>
<td>0.72</td>
</tr>
<tr>
<td>Is a product I would be proud to display in my bathroom</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
<tr>
<td>Costs a little more, but worth it</td>
<td>0.90</td>
<td>0.90</td>
<td>0.70</td>
<td>0.24</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Skincare Components

- Moisturizers. Moisturizers and Night Creams
- Face Wash and Cleansers. Exfoliators. Face Wipes
- Anti-Aging. Teeth Whitening
- Treatments. Face Serums. Blemish and Acne Treatments
- Face Masks. Sheet Masks
- Eye Care. Eye Creams and Treatments. Eye Masks
- Lip Treatments. Lip Balms and Treatments. Lip Sunscreen
- Acne and Blemishes.
Does not dry out skin
Cleans well
Leaves skin soft and smooth
Does not leave skin itchy
Is for everyday use

Has products that are fun to use
Has a long-lasting fragrance
Has products that make you smell great
The color of the product is natural

Is dermatologist recommended
Made with the "latest" ingredients
Contains familiar ingredients
Its products are made from natural ingredients that are good for you

Is relaxing
Turns my everyday shower into a few special minutes
Has a calming effect
Helps keep my skin looking young

Makes a great gift
Is a product I would be proud to display in my bathroom
Costs a little more, but worth it
Cluster Analysis & Two-Step Segmentation

• Tandem (2 Step) cluster analysis is performed when the seeks to explore multiple dimensions of product space and personal behavior.

Ad Hoc Aspects of the Health Valley Survey
• Food Purchase Behaviors
• Exercise and Wellness Activities
• Lifestyle Attitudes
• Shopping Behavior
• Health Food Attitudes
• Motivational Reasons for Healthy Living
The First Step

Multiple Q-Factor Segmentations

- Those six different classifications are brought together to create a 3 segment solution by using a K-means cluster analysis.

<table>
<thead>
<tr>
<th>Shopping Behavior</th>
<th>Healthy Food Shopper</th>
<th>Frugal Shopper</th>
<th>Convenience Shopper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buying healthy food is more important to me than buying what's on sale</td>
<td>0.78</td>
<td>-0.24</td>
<td>-0.12</td>
</tr>
<tr>
<td>I am willing to give up convenience in order to eat healthier foods</td>
<td>0.78</td>
<td>-0.03</td>
<td>-0.16</td>
</tr>
<tr>
<td>I will prepare a healthier meal even if it means more effort than a less healthy option</td>
<td>0.74</td>
<td>0.10</td>
<td>-0.26</td>
</tr>
<tr>
<td>Using a shopping list ensures I make healthier food choices</td>
<td>0.59</td>
<td>0.54</td>
<td>0.02</td>
</tr>
<tr>
<td>I use coupons for the majority of food items that I buy</td>
<td>-0.11</td>
<td>0.72</td>
<td>0.00</td>
</tr>
<tr>
<td>Using a shopping list ensures I stay on budget</td>
<td>0.34</td>
<td>0.69</td>
<td>0.04</td>
</tr>
<tr>
<td>I always buy what's on sale</td>
<td>-0.34</td>
<td>0.55</td>
<td>0.29</td>
</tr>
<tr>
<td>I look for packaged foods that are easy to eat on the go</td>
<td>-0.16</td>
<td>0.12</td>
<td>0.71</td>
</tr>
<tr>
<td>I choose what I eat based on what is most convenient</td>
<td>-0.38</td>
<td>0.11</td>
<td>0.71</td>
</tr>
<tr>
<td>I believe you have to sacrifice convenience in order to eat healthy</td>
<td>0.24</td>
<td>-0.04</td>
<td>0.69</td>
</tr>
</tbody>
</table>
The First Step
The New Segments

- We have 18 new variables. Each respondent belongs to 6 of them.

<table>
<thead>
<tr>
<th>Food Purchase Behaviors</th>
<th>Exercise and Wellness Activities</th>
<th>Lifestyle Attitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socially Responsible</td>
<td>Soy and Yoga</td>
<td>Healthy Health Management</td>
</tr>
<tr>
<td>Read-the-Ingredients</td>
<td>Fresh Food, Fruits, and Veggies</td>
<td>Weight Management Lifestyle</td>
</tr>
<tr>
<td>Reduced Calorie/Fat Purchaser</td>
<td>Fitness Freak</td>
<td>Foodie Lifestyle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shopping Behavior</th>
<th>Health Food Attitudes</th>
<th>Motivational Reasons for Healthy Living</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Food Shopper</td>
<td>Examine Ingredients</td>
<td>Strength and Vitality</td>
</tr>
<tr>
<td>Frugal Shopper</td>
<td>Pay More for Health Food</td>
<td>Weight Management</td>
</tr>
<tr>
<td>Convenience Shopper</td>
<td>Healthy Food Skeptic</td>
<td>Doctors Orders/Medical</td>
</tr>
</tbody>
</table>
Tandem Segmentation
Frequencies and Consumption Variables

<table>
<thead>
<tr>
<th>Consumption Variables</th>
<th>Monthly spend on packaged healthy food</th>
<th>% Segment Health Valley Customer</th>
<th>Number of packages Health Valley purchased in past month (non-customers=0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Valley Core</td>
<td>$134.21</td>
<td>79.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Weight Management</td>
<td>$91.83</td>
<td>56.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Medical Munchers</td>
<td>$57.92</td>
<td>44.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Brand Segmentation

Similar to Post Hoc, only we are clustering brands and attributes
Perceptual Map

Sedan Owners and Best-Selling Mid-Size Sedans in the US (2011)

- Classiness
- Sportiness
- Innovative
- Safety
- Practicability
- Affordability
- Fun to Drive
- American Made
- Youth Appeal
Perceptual Map

Segment Solutions Associated with Personal Image

Attributes
1. Reliable
2. Laid-back
3. Carefree
4. Organized
5. Conservative
6. Practical
7. Sexy
8. Private
9. Nurturing
10. Peaceful
11. Realistic
12. Confident
13. Competitive
14. Focused on image
15. Independent
16. Ambitious
17. Modern
18. Innocent
19. Aggressive
20. Fun
21. Sophisticated
22. Follower

Attributes
23. Risk taking
24. Hard working
25. Careful
26. Spontaneous
27. Open-minded
28. Imaginative
29. Sensible
30. Outspoken
31. Assertive
32. Energetic
33. Optimistic
34. Reserved
35. Co-operative
36. Focused on wellbeing
37. Sociable
38. Content
39. Traditional
40. Wise
41. Passive
42. Serious
43. Approachable
44. Leader
BiPlots

Please Rate Your Preference for Each Restaurant

Specialty Bakery

Fast Food

Casual Dining
Kano Analysis

- Exciters
- Satisfiers
- Dissatisfiers
- Indifferent
The food is served hot and fresh
I was served promptly
I enjoyed the complimentary corn bread
I enjoyed the supervised playground for kids
The manager personally thanked me
The service is excellent
The food is served hot and fresh
I was served promptly
The service is excellent
The quality of food is excellent
The barbecue/steak was tasty and flavorful
The food is a good value for the dollar
The menu has a good variety of items
My food order was correct and complete
Employees are friendly and courteous
Availability of sauces, utensils, napkins, etc. was good
The side dishes complimented the entrée
Availability of sauces, utensils, napkins, etc. was good

Exciters
(The unexpected)

Satisfiers
(Key drivers)

Indifference
(Secondary opportunity areas)

Must Be’s
(Potential Dissatisfiers)

Kano Analysis

STATED IMPORTANCE

High

Low

DERIVED IMPORTANCE
Kano Analysis

Customer Segments As a Function of Weighted Kano Satisfaction and Loyalty

- **Switchers**
- **Champions**
- **Antagonists**
- **Captives**
Reclassifying the clusters we have just formed
Segmentation Reclassification

Discriminant Analysis

Regression
Survey Sections

Weed Out

Regression
All Significant Variables

Weed Out

Discriminant Analysis
Segmentation Reclassification

This is Our Screener

<table>
<thead>
<tr>
<th>Restaurant House Classification Scheme</th>
<th>Regular</th>
<th>Occasion</th>
<th>Experimental</th>
<th>Walk-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food is prepared with excellence every time</td>
<td>2.17</td>
<td>2.56</td>
<td>2.47</td>
<td>2.18</td>
</tr>
<tr>
<td>Income</td>
<td>1.97</td>
<td>2.12</td>
<td>2.11</td>
<td>2.22</td>
</tr>
<tr>
<td>Total Visits to the Restaurant</td>
<td>1.46</td>
<td>2.07</td>
<td>1.73</td>
<td>1.91</td>
</tr>
<tr>
<td>Dinner Guest (versus Lunch)</td>
<td>1.44</td>
<td>1.46</td>
<td>1.69</td>
<td>1.68</td>
</tr>
<tr>
<td>A place with energy that says things are happening</td>
<td>1.02</td>
<td>1.43</td>
<td>1.66</td>
<td>1.64</td>
</tr>
<tr>
<td>Gender</td>
<td>0.49</td>
<td>0.60</td>
<td>0.59</td>
<td>0.38</td>
</tr>
<tr>
<td>An uncompromising experience that is worth the price</td>
<td>-0.20</td>
<td>-0.26</td>
<td>-0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>Constant</td>
<td>8.22</td>
<td>1.92</td>
<td>1.36</td>
<td>0.00</td>
</tr>
<tr>
<td>Classification Score</td>
<td>16.579</td>
<td>11.910</td>
<td>11.339</td>
<td>10.166</td>
</tr>
</tbody>
</table>
Logistic Regression

• Logistic regression in a nutshell:
 – Logistic regression is used for prediction of the probability of occurrence of an event by fitting data to a logistic curve.
 – There are two groups, the dependent variable, for logistic regression

\[
\ln\left(\frac{P}{1-P}\right) = a + bX
\]

\[
\frac{P}{1-P} = e^{a+bX}
\]

\[
P = \frac{e^{a+bX}}{1 + e^{a+bX}}
\]
A slightly obese, inactive, 55-year old female who smokes has an 18% chance of heart disease within the next 10 years.

<table>
<thead>
<tr>
<th>Risk of Coronary Heart Disease</th>
<th>Answer</th>
<th>Regression Beta</th>
<th>Product (b*d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>1</td>
<td>0.098</td>
<td>0.098</td>
</tr>
<tr>
<td>Total Cholesterol Level (TCL -200)</td>
<td>230</td>
<td>0.066</td>
<td>1.980</td>
</tr>
<tr>
<td>Body Mass Index (BMI-25)</td>
<td>32</td>
<td>0.058</td>
<td>0.406</td>
</tr>
<tr>
<td>Gender (1=male, 0=female)</td>
<td>0</td>
<td>0.028</td>
<td>0.000</td>
</tr>
<tr>
<td>Age (in years less 50)</td>
<td>55</td>
<td>0.024</td>
<td>0.119</td>
</tr>
<tr>
<td>Hours of Physical Activity (weekly)</td>
<td>0</td>
<td>-1.013</td>
<td>0.000</td>
</tr>
<tr>
<td>Equation Constant</td>
<td></td>
<td></td>
<td>-4.123</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>-1.520</td>
</tr>
</tbody>
</table>

Odds Ratio \(\frac{1}{1+e^{-z}}\) | 0.18

Risk of Coronary Heart Disease - Ten Years | **18%**
Standing Behind Their Products is the Key for Potential Business Relationships

Would Consider Doing Business With

- **Yes**: 53.8% (Nb: 46.2%)
- **No**: 46.2%

Understand the Needs of My Business

- **Yes**: 51.4% (Nb: 48.6%)
- **No**: 48.6%

Better Access

- **Yes**: 89% (Nb: 91.1%)
- **No**: 9.9%

Help Solve the Client’s Technological Problems

- **Yes**: 100% (Nb: 0%)
- **No**: 0%

Certification Process

- **Yes**: 87.5% (Nb: 12.5%)
- **No**: 12.5%
Segments and the Waterfall

Segmentation

The customers within a set all act and react similarly so they can be targeted using the same strategy.

Waterfall

The Golden Egg: High Likelihood Buyers

Two fundamental outputs from the two processes
Segments and the Waterfall

58% of customers are women

34% of women have an annual income over $75K

57% of prosperous women visit high end retailers twice a month

43% of prosperous, female shoppers have purchased two Delphine products within the past 6 months

Likely Classic Business Dressers

Likely Superstars

Segments and the Waterfall

Customers

Start

Women

Income +75K

Visit High End Retailers Twice A Month

Purchase Delphine Twice or More Within Past 6 Months

5,000,000

2,900,000

986,000

562,020

191,087

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000
Describing our segments using regression analysis
Key Driver Methodology

• A Priori segmentation: The segments already exist.

• Key Driver segmentation A mixed-methodology often referred to as clusterwise regression

• Descriptive in nature

• Employed mostly to discover what service aspects are most important to customers, or which kinds of experience.
Key Driver Methodology

<table>
<thead>
<tr>
<th>State Proud Advocates</th>
<th>Alumni High Donors</th>
<th>Practical Recent Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Gift is</td>
<td>$372</td>
<td>$558</td>
</tr>
<tr>
<td>Percent Donors</td>
<td>59%</td>
<td>79%</td>
</tr>
<tr>
<td>Oxford Campus Only</td>
<td>Older Donor</td>
<td></td>
</tr>
<tr>
<td>Very Satisfied with State University Experience</td>
<td>Very Satisfied with State University Donor Experience</td>
<td>Oxford Campus Only</td>
</tr>
<tr>
<td>Jefferson City Campus Only</td>
<td>Very Satisfied with State University Experience</td>
<td>Jefferson City Campus Only</td>
</tr>
<tr>
<td>Medical School Only</td>
<td>LinkedIn Weekly Usage</td>
<td>More than one State University Campus</td>
</tr>
<tr>
<td>University Degree 1=PostGrad, 0=Undergrad</td>
<td>Recent Donation</td>
<td>Not Yet Married</td>
</tr>
<tr>
<td>Camden Campus Only</td>
<td>Degree - Medicine - Nursing - Dentist</td>
<td>Attended Oxford Campus</td>
</tr>
<tr>
<td>Gift - Camden Campus</td>
<td>Gender 1=Male, 0=female</td>
<td>Gift - Main Campus Campus</td>
</tr>
<tr>
<td>NOT a member of a club or society</td>
<td>Degree - Science- Math- Engineering- Computers</td>
<td>Not Very Satisfied with Donor Experience</td>
</tr>
<tr>
<td>Employed</td>
<td>High Home Values</td>
<td>Female</td>
</tr>
<tr>
<td>Children</td>
<td>High Annual Gift Segment</td>
<td>NOT a Strong Bond With State University</td>
</tr>
<tr>
<td>Married</td>
<td>Have PostGrad Degree</td>
<td>NOT Recent Donation</td>
</tr>
<tr>
<td>NOT Satisfied with State University Donor Experience</td>
<td>Do Not Use Facebook Often</td>
<td>Younger Alum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT Very Satisfied with State University Experience</td>
</tr>
</tbody>
</table>
Thank you!

Michael Lieberman
Multivariate Solutions

michael@mvsolution.com